Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment

نویسندگان

  • A. Yazdani
  • V. Nassehi
چکیده

This paper presents an optimum technique based on the least squares method for the derivation of the bubble functions to enrich the standard linear finite elements employed in the formulation of Galerkin weighted-residual statements. The element-level linear shape functions are enhanced with supplementary polynomial bubble functions with undetermined coefficients. The best least squares minimization of the residual functional obtained from the insertion of these trial functions into model equations results in an algebraic system of equations whose solution provides the unknown coefficients in terms of element-level nodal values. The normal finite element procedures for the construction of stiffness matrices may then be followed with no extra degree of freedom incurred as a result of such enrichment. The performance of the proposed method has been tested on a number of benchmark linear transport equations with the results compared against the exact and standard linear element solutions. It has been observed that low order bubble enriched elements produce more accurate approximations than the standard linear elements with no extra computational cost despite employing relatively crude mesh. However, for the solution of strongly convection or reaction dominated problems significantly higher order enrichments as well as extra mesh refinements will be required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Boundary Functional for the Least-Squares Finite- Element Solution of Neutron Transport Problems

The least-squares finite-element framework for the neutron transport equation is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. This approach is extended by incorporating the boundary conditions into the leastsquares functional. The proof of the V-ellipticity and continuity of the new functional leads to bounds of the discretiz...

متن کامل

Least-Squares Finite Element Discretization of the Neutron Transport Equation in Spherical Geometry

The main focus of this paper is the numerical solution of the Boltzmann transport equation for neutral particles through mixed material media in a spherically symmetric geometry. Standard solution strategies, like the Discrete Ordinates Method (DOM), may lead to nonphysical approximate solutions. In particular, a point source at the center of the sphere yields undesirable ray effects. Posing th...

متن کامل

On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods

Purpose – This paper aims at assessing the effect of (1) the statical admissibility of the recovered solution; (2) the ability of the recovered solution to represent the singular solution; on the accuracy, local and global effectivity of recovery-based error estimators for enriched finite element methods (e.g. the extended finite element method, XFEM). Design/methodology/approach – We study the...

متن کامل

Least-Squares Finite Element Methods for Optimality Systems Arising in Optimization and Control Problems

The approximate solution of optimization and optimal control problems for systems governed by linear, elliptic partial differential equations is considered. Such problems are most often solved using methods based on applying the Lagrange multiplier rule to obtain an optimality system consisting of the state system, an adjoint-state system, and optimality conditions. Galerkin methods applied to ...

متن کامل

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1101.1826  شماره 

صفحات  -

تاریخ انتشار 2009